Как колит лед ледокол
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 ноября 2019;
проверки требуют 2 правки.
Ледоко́л — самоходное специализированное судно, предназначенное для различных видов ледокольных операций с целью поддержания навигации в замерзающих бассейнах. К ледокольным операциям относятся: проводка судов во льдах, преодоление ледовых перемычек, прокладка канала, буксировка, околка, выполнение спасательных работ.
Существует два способа преодоления ледяных препятствий: путём разрезания льда острым и подкреплённым форштевнем с последующей раздвижкой образовавшейся полыньи либо путём продавливания и раскрашивания льда весом судна. Это различие непосредственно подтверждается формой корпуса и находит своё отражение в исторически закреплённом разделении судов ледового плавания на ледоколы и ледорезы. Последний из этих терминов широко применялся во время интенсивного освоения Северного морского пути в начале XX века[1].
История ледоколов[править | править код]
Колёсный пароход «City Ice Boat No. 1» на реке Делавэр
В 1837 году в Филадельфии (США) был построен деревянный колёсный пароход «City Ice Boat No. 1», предназначенный для колки льда в гавани.
Первым в мире ледокольным судном современного типа стал российский буксирный пароход «Пайлот»[2], построенный в 1864 году. Он представлял собой портовый буксир с переделанной по типу поморской лодки носовой частью, позволявшей ломать лёд собственным весом.
Во время холодной зимы 1870/1871 годов власти Гамбурга купили чертежи «Пайлот» и построили ледокол «Айсбрехер-1» (нем. Eisbrecher I; буквально — «разрушитель льда»).
Позже появились и другие суда подобного типа. Речной «Саратовский ледокол» построен в 1896 году английской фирмой Армстронг по заказу Рязано-Уральской железной дороги для обеспечения действия переправы через Волгу у Саратова. Той же фирмой были построены для России ледоколы «Байкал» (1899) и «Ангара» (1900) для обеспечения работы железнодорожной переправы через Байкал.
Первым в мире арктическим ледоколом стал построенный на верфи Armstrong Whitworth «Ермак» (1898 год — эксплуатировался Балтийским флотом до 1964 года). В 1917 году в Англии был построен «Святогор» (с 1927 года носит имя «Красин» в честь советского полпреда в Лондоне Л. Б. Красина, добившегося его передачи СССР). В 1942 году в составе конвоя PQ-15 «Красин» прошёл из исландского порта Рейкьявик в Мурманск, эксплуатировался Северным морским пароходством и Мурманским морским пароходством.
Балтийский завод (Санкт-Петербург) построил с 1921 по 1941 год 8 ледоколов, в том числе «И. Сталин», «В. Молотов», в период 1956—1958 завод построил 10 речных ледоколов, с 1974 года завод построил серию атомных ледоколов типа Арктика.
Первым в мире ледоколом с атомной энергетической установкой стал ледокол «Ленин» построенный в 1959 году, в 1974 году были завершены ходовые испытания второго атомного ледокола — «Арктика», который стал головным в одноимённой серии крупнейших ледоколов мира.
В 1988 году был построен советский лихтеровоз «Севморпуть», в мире крупнейшее ледокольно-транспортное судно и одно из четырёх торговых судов с ядерной силовой установкой.
В ноябре 2013 года был заложен на Балтийском заводе в Санкт-Петербурге и 16 июня 2016 года был спущен на воду новый самый большой и мощный двухреакторный ледокол в мире, который вновь получил имя «Арктика» и стал головным из новой серии атомных ледоколов ЛК-60Я.[3].
Конструкция ледоколов[править | править код]
Классическая форма корпуса арктического ледокола (Ледокол «Красин», вид с форштевня)
Корпус судна обычно делается бочкообразным, со специальным ледовым усилением в районе ватерлинии (ледовый пояс), «ледокольной» формой носовой и М-образной формой кормовой оконечности, а энергетическая установка — дизельная или атомная паротурбинная с электрической передачей.
Такая конструкция корпуса обеспечивает его повышенную прочность, способность противостоять воздействию льда: устойчивость к истиранию в районе ватерлинии а также возможным сжатиям в ледовых полях. Форма носа позволяет с ходу выползать на кромку льда, разламывая его своим весом. М-образная в плане форма кормы используется для обеспечения возможности буксировать другое судно «на усах», когда нос буксируемого судна размещается в углублении кормовой оконечности (и при этом буксируемое судно может «подталкивать» ледокол). Вместе с тем, классическая бочкообразная конструкция корпуса, хорошо работающая во льдах, придаёт ледоколу не самые лучшие мореходные качества: на волне в свободной воде его может довольно сильно и резко качать.
Применяемая на ледоколах дизель-электрическая (или атомная турбо-электрическая) установка сама по себе обеспечивает судну высокую манёвренность (на более старых ледоколах ставили паровые машины с непосредственной передачей) и возможность варьировать мощность. Современные отечественные ледоколы, включая и атомные, строятся с тремя гребными винтами. Это также направлено на повышение манёвренности и живучести пропульсивной установки судна. Кроме того, силовая установка должна обеспечивать судну повышенную автономность, потому что при работе во льдах дозаправка практически невозможна (ледоколы с паровыми машинами не могли пройти без дозаправки всю трассу Северного Морского пути)[4].
Применение ледоколов[править | править код]
Ледоколы применяются для самостоятельной доставки грузов в труднодоступные районы Арктики и Антарктики, эвакуации и доставки экспедиций на научные станции, а чаще всего для прокладки судоходного пути другим судам, следующим за ледоколом.
Ледоколы внесли значительный вклад в освоение Северного морского пути.
Наибольшим ледокольным флотом обладают Россия, США, Канада, Финляндия, Швеция.
Ранее[когда?] США имели 7 ледоколов, а в настоящее время[когда?] — 3, из которых только один тяжёлый. Россия имеет 40 ледоколов, а ещё 11 находятся в стадии планирования или строительства[5]. В настоящее время[когда?] у России есть четыре действующих атомных ледоколов — «Ямал», «50 лет Победы», «Таймыр» и «Вайгач». Ожидают утилизации[когда?] пять атомных ледокола — «Арктика», «Россия», «Советский Союз», «Сибирь» и «Россия»[6]. Также у России есть единственный в мире атомный лихтеровоз «Севморпуть».
Ледоколы в России сегодня[править | править код]
Ледокольный флот России включает мощные атомные ледоколы, а также дизельные ледоколы.
По данным на 2011 год, всего в России эксплуатировалось 5 атомных и 39 дизель-электрических ледоколов; один атомный ледокол «Советский Союз» находился в ремонте.
Из-за старения ледокольного флота и задержек построения новых ледоколов примерно к 2015 году в России могла возникнуть так называемая «ледовая пауза». 31 января 2007 года в России был достроен ледокол «50 лет Победы».
1 октября 2005 премьер-министр России Михаил Фрадков подписал распоряжение о передаче ледокола «50 лет Победы» в доверительное управление ОАО «Мурманское морское пароходство» до 27 августа 2008 года. После указанной даты ледокол перешёл в управление ФГУП «Росатомфлот».
Всего, по сообщениям Министерства транспорта, Россия нуждается в 6 атомных ледоколах[7]. При этом срок строительства одного ледокола составляет около 8 лет.
Атомный ледокольный флот позволяет доставлять по Северному морскому пути ежегодно 5 млн тонн груза; реальный грузопоток составляет 1,2 млн тонн. Основная часть грузопотока приходится на Норильский промышленный район. В период с 2006 по 2009 год «Норильский никель» сформировал собственный арктический флот из нескольких крупных транспортных судов усиленного ледового класса, способных идти во льдах толщиной 1,5 метра, и практически перестал нуждаться в услугах ледоколов.
Действующие дизельные ледоколы мощностью 10 МВт и выше
Название | Год ввода в строй, страна/завод | Предполагаемый год выработки продлённого ресурса | Мощность | Доп. сведения |
---|---|---|---|---|
«Тор» | 1964, Финляндия | н/д | 10 МВт | Принадлежит ООО «Вспомогательный флот». Работает на Балтике (на начало 2007 г.). В начале 2014 года числился в резерве.[8] |
«Дудинка» | 1970, Финляндия | н/д | 10 МВт | Принадлежит МТФ ОАО «ГМК «Норильский Никель». Работает на Енисее (на 2006 г.) |
«Ермак» | 1974, Финляндия | 2015 | 26,5 МВт | На балансе ФГУП «Росморпорт». Работает на Балтике. |
«Адмирал Макаров» | 1975, Финляндия | 2015 | 26,5 МВт | Принадлежит компании «Феско» (ДВМП). |
«Красин» | 1976, Финляндия | 2017 | 26,5 МВт | Принадлежит компании «Феско» (ДВМП). |
«Капитан Сорокин» | 1977, Финляндия | 2017 | 16,2 МВт | На балансе ФГУП «Росморпорт». Работает на Балтике. |
«Капитан Николаев» | 1978, Финляндия | 2017 | 16,2 МВт | Принадлежит ФГУП «Росморпорт». |
«Талаги» | 1979, Канада | н/д | 12 МВт | Куплен компанией «Роснефть» в 2003 г. для проводки танкеров. Бывший «Canmar Kigoriak». |
«Капитан Драницын» | 1980, Финляндия | 2019 | 16,2 МВт | Принадлежит ФГУП «Росморпорт». Сертифицирован как пассажирское судно (для круизов). |
«Капитан Хлебников» | 1981, Финляндия | 2017 | 16,2 МВт | Принадлежит компании «Феско» (ДВМП). |
«Магадан» | 1982, Финляндия | 2017 | 7 МВт | Принадлежит компании «Феско» (ДВМП). Используется в рамках сахалинских нефтяных проектов и как портовый ледокол. |
«Владимир Игнатюк» | 1983, Канада | н/д | Ок. 17 МВт | Ледокол-буксир. Куплен ММП в 2003 г. Бывший «Arctic Kalvik». |
«ФЕСКО Сахалин» | 2005, Финляндия | н/д | 17,4 МВт | Принадлежит компании «Феско» (ДВМП). Предназначен для обслуживания буровых платформ. |
Pacific Endeavour[9] | 2006, корпус — Румыния, начинка — Норвегия | н/д | 17,3 МВт | Принадлежит «Приморскому морскому пароходству» и Swire Pacific. Предназначен для обслуживания буровых платформ в рамках проекта «Сахалин-2». |
Pacific Endurance[9] | 2006, корпус — Румыния, начинка — Норвегия | н/д | 17,3 МВт | Принадлежит «Приморскому морскому пароходству» и Swire Pacific. Предназначен для обслуживания буровых платформ в рамках проекта «Сахалин-2». |
Pacific Enterprise[9] | 2006, корпус — Румыния, начинка — Норвегия | н/д | 17,3 МВт | Принадлежит «Приморскому морскому пароходству» и гонконгской Swire Pacific. Предназначен для обслуживания буровых платформ в рамках проекта «Сахалин-2». |
«Владислав Стрижов»[10] | 2006, корпус — Украина, начинка — Норвегия | н/д | 20 МВт | Принадлежит компании «Севморнефтегаз». Предназначен для обслуживания буровых платформ в рамках освоения Приразломного месторождения. |
«Юрий Топчев»[10] | 2006, корпус — Украина, начинка — Норвегия | н/д | 20 МВт | Принадлежит компании «Севморнефтегаз». Предназначен для обслуживания буровых платформ в рамках освоения Приразломного месторождения. |
«Москва» | 2008, Балтийский завод | н/д | 16 МВт | Передан ФГУП «Росморпорт» для работы на Балтике. |
«Санкт-Петербург»[11] | 2009, Балтийский завод | н/д | 16 МВт | Передан ФГУП «Росморпорт» для работы на Балтике. |
«Владивосток» | 2015, Выборгский судостроительный завод | н/д | 17,4 МВт | Передан ФГУП «Росморпорт». |
«Мурманск» | 2015, Выборгский судостроительный завод | н/д | 17,4 МВт | Передан ФГУП «Росморпорт». |
«Обь» | 2019, Выборгский судостроительный завод | н/д | 14,6 MBт | Передан ФГУП «Атомфлот» |
Ледоколы в филателии[править | править код]
- Серия почтовых марок СССР, 1978 год
Ледокол «Арктика»
Ледокол «Ленин»
Ледокол «Адмирал Макаров»
Ледокол «Василий Прончищев»
Ледокол «Капитан Белоусов»
Ледокол «Москва»
- Серия почтовых марок России, 2009 год
Ледокол «Ленин»
Ледокол «Таймыр»
Ледокол «Ямал»
Ледокол «50 лет Победы»
См. также[править | править код]
- Ледоколы России
- Ледовый класс
Примечания[править | править код]
Литература[править | править код]
- Андриенко В. Г. Ледокольный флот России, 1860-е — 1918 гг. — М.: Европейские издания, 2009. — 531 с. — ISBN 9785987970379.
- Алексеев Г.М. Особые случаи морской практики. [Учеб. пособие для курсантов высш. инж. морских училищ] / Ленингр. высш. инж. морское училище им. адм. С. О. Макарова. — М.: Морской транспорт, 1959. — 339 с.
Ссылки[править | править код]
- «Современные ледоколы» — статья о принципах конструкций ледоколов
- Флотилия Р. У.ж.д.
- Атомный ледокол «Ямал»
- Как устроен атомный ледокол? Виртуальная экскурсия
Источник
По сути своей атомный ледокол — это пароход. Атомный реактор нагревает воду, которая превращается в пар, который раскручивает турбины, которые возбуждают генераторы, которые вырабатывают электричество, которое поступает в электромоторы, которые крутят 3 гребных винта.
Толщина корпуса в местах ломки льда 5 сантиметров, но прочность корпусу придает не столько толщина обшивки, сколько количество и расположение шпангоутов. У ледокола двойное днище, так что в случае пробоины вода в корабль поступать не будет.
На атомном ледоколе «50 лет Победы» установлены 2 ядерных реактора мощностью по 170 Мегаватт каждый. Мощности этих двух установок достаточно, чтобы снабжать электричеством город с населением в 2 миллиона человек.
Ядерные реакторы надежно защищены от аварий и внешних ударов. Ледокол может выдержать прямое попадание в реактор пассажирского самолета или столкновение с таким же ледоколом на скорости до 10 км/ч.
Реакторы заправляют новым топливом раз в 5 лет!
Для нас провели небольшую экскурсию по машинному отделению ледокола, фотографии которого под катом. Плюс к этому я покажу где мы ели, чем питались, как отдыхали и остальные внутренние помещения ледокола…
Началась экскурсия в кабинете главного инженера. Он вкратце рассказал об устройстве ледокола и о том, куда мы пойдем во время экскурсии. Так как в группе были в основном иностранцы, то всё переводили сначала на английский, а затем на японский:
3.
2 турбины, каждая из которых вращает одновременно 3 генератора, вырабатываю переменный ток. На заднем плане желтые ящики — это выпрямители. Так как гребные электродвигатели работают от постоянного тока, то его надо выпрямлять:
4.
5.
Выпрямители:
6.
Электромоторы, вращающие гребные винты. В этом месте очень шумно и оно находится в 9 метрах под ватерлинией. Общая осадка ледокола — 11 метров:
7.
Очень впечатляюще выглядит рулевая машина. На мостике рулевой пальчиком поворачивает небольшой штурвал, а здесь огромные поршни вращают руль за кормой:
8.
А это верхняя часть руля. Сам он находится в воде. Ледокол гораздо маневреннее обычных кораблей:
9.
Опреснительные установки:
10.
В день они производят 120 тонн пресной воды:
11.
Воду можно попробовать прямо из опреснителя. Я выпил — обычная дистиллированная вода:
12.
Вспомогательные котлы:
13.
14.
15.
16.
17.
На корабле предусмотрено очень много степеней защиты от нештатных ситуаций. Одна из них — это тушение пожаров углекислым газом:
18.
19.
Чисто по-русски — из-под прокладки капает масло. Вместо того, чтобы заменить прокладку, просто повесили баночку. Не поверите, но у меня дома так же. У меня вот так же потек полотенцесушитель, так я его до сих пор не заменил, а просто раз в неделю выливаю ведро с водой:
20.
Рулевая рубка:
21.
Ледоколом управляют 3 человека. Вахта длится 4 часа, то есть каждая смена несет вахту, например, с 4 дня до 8 вечера и с 4 утра до 8 утра, следующие с 8 вечера до полуночи и с 8 утра до полудня и т.д. Всего 3 смены.
Вахта состоит из рулевого матроса, который непосредственно крутит штурвал, Старшего вахты, который отдает команды матросу куда крутить руль и отвечает за весь корабль и вахтенного помощника, который делает записи в судовой журнал, отмечает положение корабля на карте и помогает Старшему вахты.
Старший вахты обычно стоял в левом крыле мостика, где было установлено всё необходимое для навигации оборудование. Три больших рычага посередине — это рукоятки машинных телеграфов, которые управляют частотой вращения винтов. Каждый из них имеет 41 положение — 20 вперед, 20 назад и стоп:
22.
Рулевой матрос. Обратите внимание на размер штурвала:
23.
Радиорубка. Отсюда я посылал фотографии:
24.
На ледоколе огромное количество трапов, включая несколько представительских:
25.
Коридоры и двери в каюты.
26.
Бар, где мы коротали солнечные белые ночи:
27.
Библиотека. Какие книги там обычно стоят не знаю, так как для нашего круиза книги привезли из Канады и были они все на английском:
29.
Лобби ледокола и окошко ресепшн:
30.
Почтовый ящик. Хотел отправить себе открытку с Северного полюса, но забыл:
31.
Бассейн и сауны:
32.
Спортзал:
33.
Качалка:
34.
Перед входом в ресторан висел специальный шар со спиртовым раствором:
35.
Посадка была свободная и многие перемещались от одного стола к другому, но мы — шестеро русскоговорящих пассажиров — забронировали себе столик в угли и всегда трапезничали вместе:
36.
Салаты были на шведском столе, а на основное можно было выбрать блюдо из трех вариантов:
37.
38.
39.
Кормили нас высокой кухней. Все повара были привезены из Аргентины. Посуда из Европы:
40.
Что уж говорить, у нас только кондитеров было трое. Эти 3 немца целыми днями только и делали, что творили восхитительные десерты:
41.
Взят у sergeydolya в Как устроен ледокол
Читайте наше сообщество также вконтакте, где огромный выбор видеосюжетов по тематике «как это сделано» и в фейсбуке.
Источник
Принимая ванну, не упустите случая проделать следующий опыт. Прежде чем покинуть ванну, откройте ее выпускное отверстие, продолжая лежать на ее дне. По мере того как станет выступать над водою все большая и большая часть вашего тела, вы будете ощущать постепенное его отяжеление. Самым наглядным образом убедитесь вы при этом, что вес, утрачиваемый телом в воде, появляется вновь, лишь только тело оказывается вне воды.
Когда такой опыт невольно проделывает кит, очутившись во время отлива на мели, последствия оказываются для животного роковыми: его раздавит собственным чудовищным весом. Недаром киты живут в водной стихии: выталкивающая сила жидкости спасает их от гибельного действия силы тяжести.
Сказанное имеет ближайшее отношение к заголовку настоящей статьи. Работа ледокола основана на том же физическом явлении: вынесенная из воды часть корабля перестает уравновешиваться выталкивающим действием воды и приобретает свой «сухопутный» вес. Не следует думать, что ледокол разрезает лед на ходу непрерывным давлением своей носовой части – напором форштевня. Так работают не ледоколы, а ледорезы. Этот способ действия пригоден только для льда сравнительно незначительной толщины.
Подлинные морские ледоколы – такие, как «Красин» или «Ермак», – работают иначе. Действием своих мощных машин ледокол надвигает на поверхность льда свою носовую часть, которая с этой целью устраивается сильно скошенной под водой. Оказавшись вне воды, нос корабля приобретает полный свой вес, и этот огромный груз обламывает лед. Для усиления действия в носовые цистерны ледокола нередко накачивают еще воду – «жидкий балласт».
Так действует ледокол до тех пор, пока толщина льда не превышает полуметра. Более мощный лед побеждается ударным действием судна. Ледокол отступает назад и налетает всей своей массой на кромку льда. При этом действует уже не вес, а кинетическая энергия движущегося корабля; судно превращается словно в артиллерийский снаряд небольшой скорости, зато огромной массы, в таран.
Ледяные торосы в несколько метров высоты разбиваются энергией многократных ударов прочной носовой части ледокола. Участник знаменитого перехода «Сибирякова» в 1932 г. моряк-полярник Н. Марков, так описывает работу этого ледокола:
«Среди сотен ледяных скал, среди сплошного покрова льда „Сибиряков“ начал битву. Пятьдесят два часа подряд стрелка машинного телеграфа прыгала от „полного назад“ к „полному вперед“. Тринадцать четырехчасовых морских вахт „Сибиряков“ с разгона врезался в лед, крошил его носом, влезал на лед, ломал его и снова отходил назад. Лед, толщиной в три четверти метра, с трудом уступал дорогу. С каждым ударом пробивались на треть корпуса».
Как работает ледокол?
Принимая ванну, не упустите случая проделать следующий опыт. Прежде чем покинуть ванну, откройте ее выпускное отверстие, продолжая лежать на ее дне. По мере того как станет выступать над водою все большая и большая часть вашего тела, вы будете ощущать постепенное его отяже-ление. Самым наглядным образом, убедитесь вы при этом, что вес, утрачиваемый телом в воде , появляется вновь, лишь -только тело оказывается вне воды.
Когда такой опыт невольно проделывает кит, очутившись во время отлива на мели, последствия оказываются для животного роковыми: его раздавит собственным чудовищным весом.
Недаром киты живут в водной стихии: выталкивающая сила жидкости спасает их от гибельного действия силы тяжести.
Сказанное имеет ближайшее отношение к работе ледокола, которая основана на том же физическом явлении: вынесенная из воды часть корабля перестает уравновешиваться выталкивающим действием воды и приобретает свой «сухопутный» вес.
Не следует думать, что ледокол разрезает лед на ходу непрерывным давлением своей носовой части. Так работают не ледоколы, а ледорезы. Этот способ действия пригоден только для льда сравнительно незначительной толщины. Если лед более мощный, то он побеждается ударным действием судна. Ледокол отступает назад и налетает всей своей массой на кромку льда. При этом действует уже не вес. Судно словно превращается в артиллерийский снаряд небольшой скорости, зато огромной массы, в таран. Ледяные торосы в несколько метров высоты разбиваются энергией многократных ударов прочной носовой части ледокола. Наша страна располагает самыми крупными и мощными в мире ледоколами.
Устройство ледокола
Большинство судов имеют узкую палубу, V-образный корпус, почти вертикальный нос и двигаются за счет вращения гребного винта, который соединен непосредственно с судовым двигателем.
Все не так у ледоколов. Эти суда специально приспособлены для хождения по морям, забитым плавучими льдинами или скованным толстым паковым льдом. Поэтому они очень тяжелые и обшиты снаружи сталью, что позволяет им ломать лед 35-футовой толщины безо всяких вмятин и пробоин. Их широкие корпуса и закругленные днища также помогают избежать подобных неприятностей.
Столкнувшись с паковым льдом, мощный ледокол задирает свой изогнутый нос и всем весом наваливается на лед. Обычно этого бывает достаточно, чтобы сделать проход. Для совершения подобного маневра гребной винт должен изо всех сил толкать корабль вперед и в то же время не повредиться. Поэтому гребной винт у ледоколов надежно спрятан под корпусом судна и приводится в движение не судовым, а электродвигателем. Что позволяет винту крутиться с исключительно малой скоростью.
Японский ледокол «Ширази» длиной 440 футов
Японский ледокол «Ширази» длиной 440 футов оснащен тремя дизельными двигателями, работающими в одной упряжке с электродвигателями, которые вращают гребной винт. Суммарная выходная мощность двигателей ледокола 90 000 лошадиных сил.
Приемы создания проходов в ледовых морях
Чтобы открыть и вести навигацию в арктических морях: к нефтяным разработкам, изолированным научным и военным базам, к стратегически важным северным портам требуется помощь ледоколов. Тонкий лед легко сдается этим мощным кораблям, и они его берут лобовым тараном. Когда надо разбить плавающую льдину или расширить во льдах открытый проход, ледокол при помощи воды, переливающейся в крено-вых цистернах с одного борта к другому, наклоняется набок — как показано на правом рисунке. При таких покачиваниях корпус корабля режет и дробит ледовые поля. У некоторых ледоколов в килевой части дополнительно вмонтированы еще боковые движители, чтобы облегчить покачивание.
Выполнение ледокольной работы с помощью крена
Встретив паковый лед, ледокол носом взбирается на него. При этом топливо из носовой балластной цистерны переливается в кормовую. Когда весь нос корабля надежно взгромоздится на лед, насосы начинают перекачивать топливо обратно в носовую балластную цистерну. Этого добавочного веса обычно достаточно, чтобы лед уступил и посторонился.
Когда командир находится на висячем мостике, он может сверху окинуть взглядом свой корабль, который был создан для того, чтобы пробуждать к жизни полярные моря. Типичный ледокол шире обычного корабля той же длины. Это добавляет ему устойчивости и грузоподъемности. Чашеобразный профиль днища позволяет легко забираться на такие ледяные поля, которые бы просто затерли обычное судно. Крутой скос носовой части делается для того, чтобы ледокол, скользя, легко забирался на паковый лед. А при обычной форме носа корабль может лишь тыкаться о такой лед. Судовой ледокольный двигатель вращает электрогенератор. Генератор питает двигатель, а тот крутит гребной винт. Это позволяет наилучшим образом управлять скоростью судна.
Атомный ледокол
Сегодня в портовом городе Мурманске проживает около 300 тысяч жителей. Цифра не впечатляет, тем не менее это самый большой в мире город находящийся за Северным полярным кругом.
Порт расположен на Кольском заливе, который никогда не замерзает даже, несмотря на полярные широты, благодаря этому сюда могут заходить корабли и суда всего мира круглый год. Благодаря теплым океаническим течениям Баренцево море целиком не покрывается льдами, а в самом городе зимой не так холодно. Зарождаясь в районе Карибского моря, течение Гольфстрим устремляется через Атлантический океан к Европе, омывая по дороге берега Великобритании и Исландии. Тепловая мощность данного потока эквивалентна миллиону атомных станций. Этого достаточно для того чтобы климат Северной Европы был мягким, а Баренцево море оставалось судоходным круглый год. Дальше, где нет теплого течения восточнее Новой Земли единственные суда, которые могут свободно ходить это ледоколы. Через льды Арктики проходит очень важный транспортный коридор — Северный морской путь через порты Мурманск-Салехард-Дудинка. Он не только открывает доступ к территориям Восточной Сибири, но и является перспективным маршрутом для международных морских перевозок. Путь из Северного моря в Японское море через Суэцкий канал мимо пиратского Сомали составляет 23 тысячи км, а если ледоколом через Северный Ледовитый океан, то всего 14 тысяч.
Первым в мире атомным ледоколом стал «Ленин», построенный в 1959 году. Конечно же до него были и дизельные и паровые ледоколы, но именно атомные позволили совершено по новому взглянуть на освоение арктических просторов. С появлением атомоходов движение по Северному морскому пути стало возможным круглый год. Главное преимущества атомного ледокола это автономность. Ему не нужно пополнять запасы угля и дизельного топлива. Это позволило атомоходу «Ленин» за первые 6 лет эксплуатации преодолеть 150 тысяч км и провести за собой более 400 судов по Северному морскому пути. Ему на смену пришел атомный ледокол «Арктика», который положил начало целому семейству ледокольных судов одноименного класса. В 1977 году «Арктика» стал первым в мире кораблем, который в надводном положении достиг Северного полюса. Особая конструкция корпуса ледокола дает возможность пробивать трехметровые льды.
Атомный ледокол очень похож на пароход. Принцип его действия вкратце можно описать так: атомный реактор превращает воду в пар, пар раскручивает турбины генератора, генератор вырабатывает электричество, оно в свою очередь поступает на электромоторы, вращающие 3 гребных винта.
Корпус ледокола достигает своей прочности, а прочным ему быть необходимо, т.к. он своим весом ломает и раздвигает ледяные глыбы, за счет шпангоутов, или, как их называют в простанородье, ребер жесткости. Корпус сшит из двойной стали толщиной в 5 см, так что при пробоине первого слоя вода не попадет в отсеки самого ледокола, только заполнится один из секторов обшивки корпуса.
На атомном ледоколе «50 лет Победы» установлены 2 ядерных реактора общей мощностью 340 Мегаватт. Если реакторы будут работать круглосуточно, то этого вполне хватит, чтобы снабдить электроэнергией город Новосибирск с населением в 2 млн. человек. Сами реакторы очень хорошо защищены, и если даже на ледокол упадет пассажирский самолет, то реактор не пострадает. Работают они тоже достаточно долго: топлива хватает ему на 5 лет работы.
Источники: allforchildren.ru, www.ljpoisk.ru, potomy.ru, information-technology.ru, korabley.net, vse-krugom.ru, forum.worldofwarships.ru
Новые виды аккумуляторов
Новый вид аккумуляторов заряжается в десятки раз быстрее без потери мощности и емкости. Группой Braun создана новая трехмерная наноструктура …
Пророк из Прованса
Свое имя он сделал, бесстрашного врачуя чуму и изобретая косметические средства для прекрасного пола. Но снискал бессмертие пророчествами и среди равных …
Как узнать дату выпуска шин
Ни для кого не секрет, что резина со временем высыхает, теряет эластичность, твердеет и даже трескается. Покрышки не являются …
Робот nao
Мы любим наших четвероногих друзей, уж конечно, не за то, что они приносят в дом чистоту и порядок — этого от …
Древние чудовища
Сирена полу женщина – полу птица, которая своим чарующим пением заманивала моряков к своему острову, где они погибали, разбиваясь о …
Михаил Ломоносов биография
Великий русский учёный, химик, физик, художник и поэт Михаил Васильевич Ломоносов был рождён 19-ого ноября 1711-ого года в Архангельской губернии. С …
Автомобиль серии Собери сам
Сборный авто BugE разработан Марком Мерфи из Кресуэлла, штат Орегон, ранее работавшим в качестве дизайнера на различные компании, такие как …
Источник